

РАБОЧАЯ ДОКУМЕНТАЦИЯ

РЕКЛАМНО-ИНФОРМАЦИОННАЯ ВЫВЕСКА "ТИТАН-GS. ГАРДЕРОБНЫЕ СИСТЕМЫ"

Габаритные размеры: 5000х1245 мм

Адрес установки: г. Владивосток, ул. Калинина, 8, ТВК "Калина Молл", место В6

ШИФР: 11.23-416/000

ГИП:	J. Mofile	Морозихин Р.В.
Представитель заказчика:		

ВЕДОМОСТЬ ОСНОВНЫХ КОМПЛЕКТОВ

Обозначение	Наименование	Примечаниие
11.23-416/000	Конструктивные решения	
11.23-416/PP	Расчетно-поянительная записка	
11.23-416/30M	Электроснабжение	

ВЕДОМОСТЬ ЧЕРТЕЖЕЙ ОСНОВНОГО КОМПЛЕКТА ДОКУМЕНТАЦИИ

Обозначение	Наименование	/lucm
	Общие данные	2
	Общий вид	3
	Расположение монтажных прогонов	4
	Вывеска. Сборочный чертеж	5-6
	Взрыв-схема вывески	7
	Подрамник	8
	Зацеп Г	9
	3ayen Fix	10

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование параметра и единицы измерения	Значение
Длина, мм	5000
Ширина, мм	1245
Толщина, мм	90
Масса, кг	70
Номинальное напряжение сети, В	~220
Номинальная частота сети, Гц	50
Мощность уст., Вт	300

ВЕДОМОСТЬ ССЫЛОЧНЫХ И ПРИЛАГАЕМЫХ ДОКУМЕНТОВ

Обозначение	Наименование	Примечание
	Ссылочные документы	
СП.20.13330.2016	Актуализированная редакция СНиП 2.01.07-85* "Нагрузки и воздействия"	
СП.20.13330.2017	Актуализированная редакция СНиП II-23-81* "Стальные коснтрукции"	
СП.48.13330.2019	СНиП 12-01-2004 "Организация строительства"	
СП 53-101-98	Изготовление и контроль качества стальных строительных конструкций.	
СП 28.13330.2017	«СНиП 2.03.11-85 Защита строительных конструкций от коррозии»	
	Прилагаемые документы	

Технические решения, принятые в рабочем проекте, соответствуют требованиям экологических, санитарно-гигиенических, противопожарных и других норм, действующих на территории Российской Федерации и обеспечивают безопасную для жизни людей эксплуатацию изделия при соблюдении предусмотренных рабочими чертежами мероприятий.

Главный инженер проекта

Морозихин Р.В.

ОБЩИЕ ЧКАЗАНИЯ

1. ИСХОДНЫЕ ДАННЫЕ:

- 1.1. Адрес объекта: г. Владивосток, ул. Калинина, 8, ТВК "Калина Молл", место Вб
- 1.2 Техническое задание.
- 1.3 Проектная документация разработана в соответствии с нормативными документами по строительству, действующими на территории РФ.

2. КОНСТРУКТИВНОЕ РЕШЕНИЕ:

Корпус объемных световых букв выполнен из молочного акрилового листа 3 мм (лицевая часть)

и вспененного ПВХ 3 мм (боковая часть). Соединение лицевых и боковых частей осуществляется методом проклейки. Склейку деталей производить цианоакрилатным клеем, при склеивании соблюдать инструкцию производителя. Задник букв выполнен из вспененного ПВХ 10 мм. Соединение корпусов букв и задников осуществляется при помощи саморезов с потайной головкой 2,9х13 DIN 7982. Буквы через задники крепятся к подрамнику саморезами 4,2х19 DIN 968. Подрамник – сварной. Выполнен из трубы 40х25х1,5 ГОСТ 8645-68 С235. Окрашен на заводе-изготовителе.

Вывеска монтируется на монтажную подсистему (горизонтальные направляющие из трубы 40х40х3 ГОСТ 8639-82 С235) при помощи зацепов на подрамнике. Верхние зацепы фиксируются на направляющих при помощи болтового соединения. Нижние зацепы фиксируются "в распор".

Тип подсветки: светодиодная внутренняя. (см. 00.00-000/ЭОМ)

3. УКАЗАНИЯ К РАЗРАБОТКЕ ЧЕРТЕЖЕЙ, ИЗГОТОВЛЕНИЮ И МОНТАЖУ МЕТАЛЛОКОНСТРУКЦИЙ

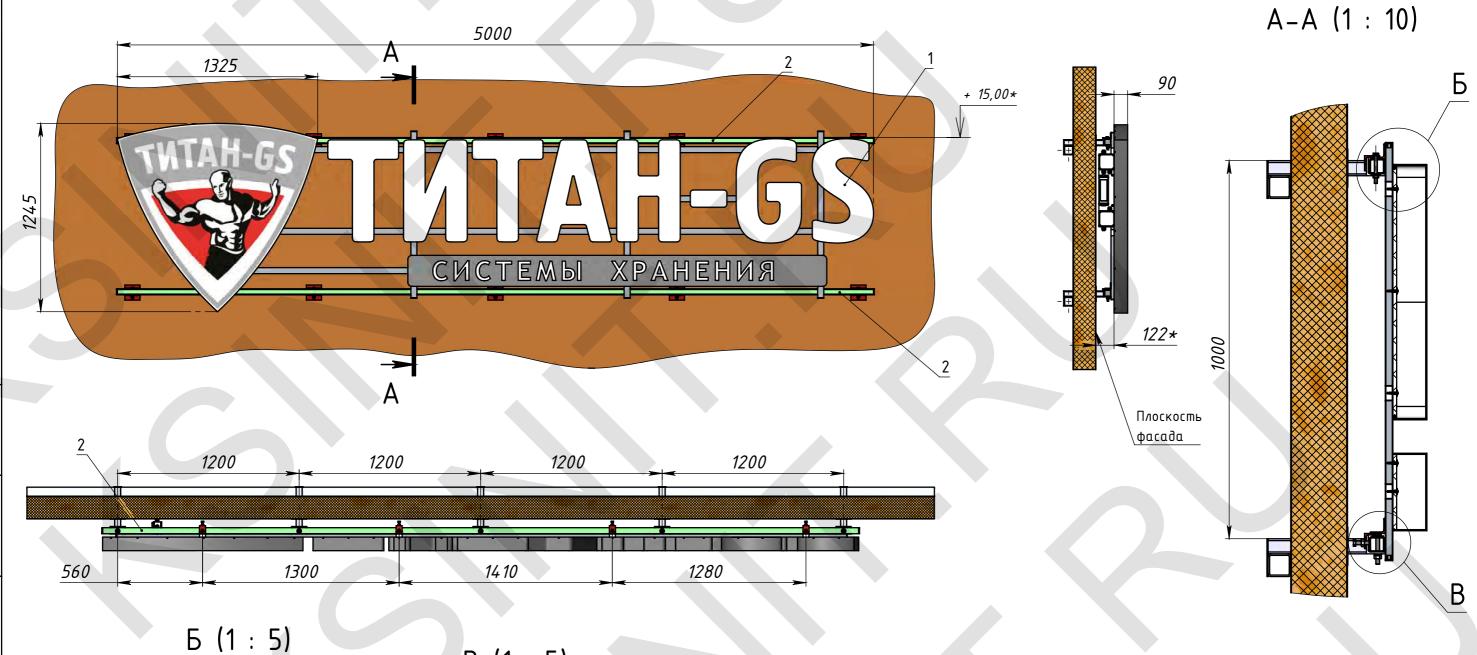
- 3.1. Изготовление и монтаж конструкций производить в соответствии с требованиями:
- ГОСТ 23118-2012 "Конструкции стальные строительные. Общие технические условия";
- СП53-101-98 "Изготовление и контроль качественных строительных конструкций";
- MДС 53-1.2001 "Рекомендации по монтажу стальных строительных конструкций"
- (κ CHuΠ 3.03.01-87;
- 3.2. Монтажные соединения на болтах класса точности В.
- 3.3. Материалы для сварки (заводской) принимать по таблице 55, приложения 2 СНиП II-23-81 "Стальные конструкции. Нормы проектирования":
- Применяемые электроды должны соответствовать ГОСТ 9467-75;
- Категории и уровни качества сварных швов в соответствии с ГОСТ 23118-2012.

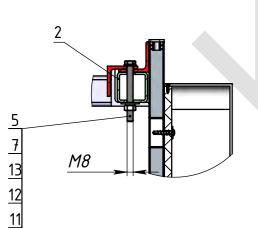
Сварные соединения выполнять угловыми и стыковыми швами по контуру сопряжения деталей, в соответствии с требованиями ГОСТ 5264-80. Катеты сварных швов принять по наименьшей толщине свариваемых деталей.

3.4. Все монтажные соединения выполняются на болтах класса прочности 8.8, класса точности -В. Болты класса точности 8.8 (по ГОСТ 1759.4-87*), гайки (по ГОСТ 1759.5-87*); шайбы (по ГОСТ 18123-82*).

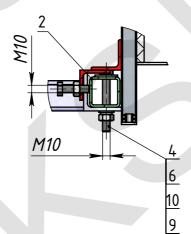
4. АНТИКОРРОЗИОННАЯ ЗАЩИТА.

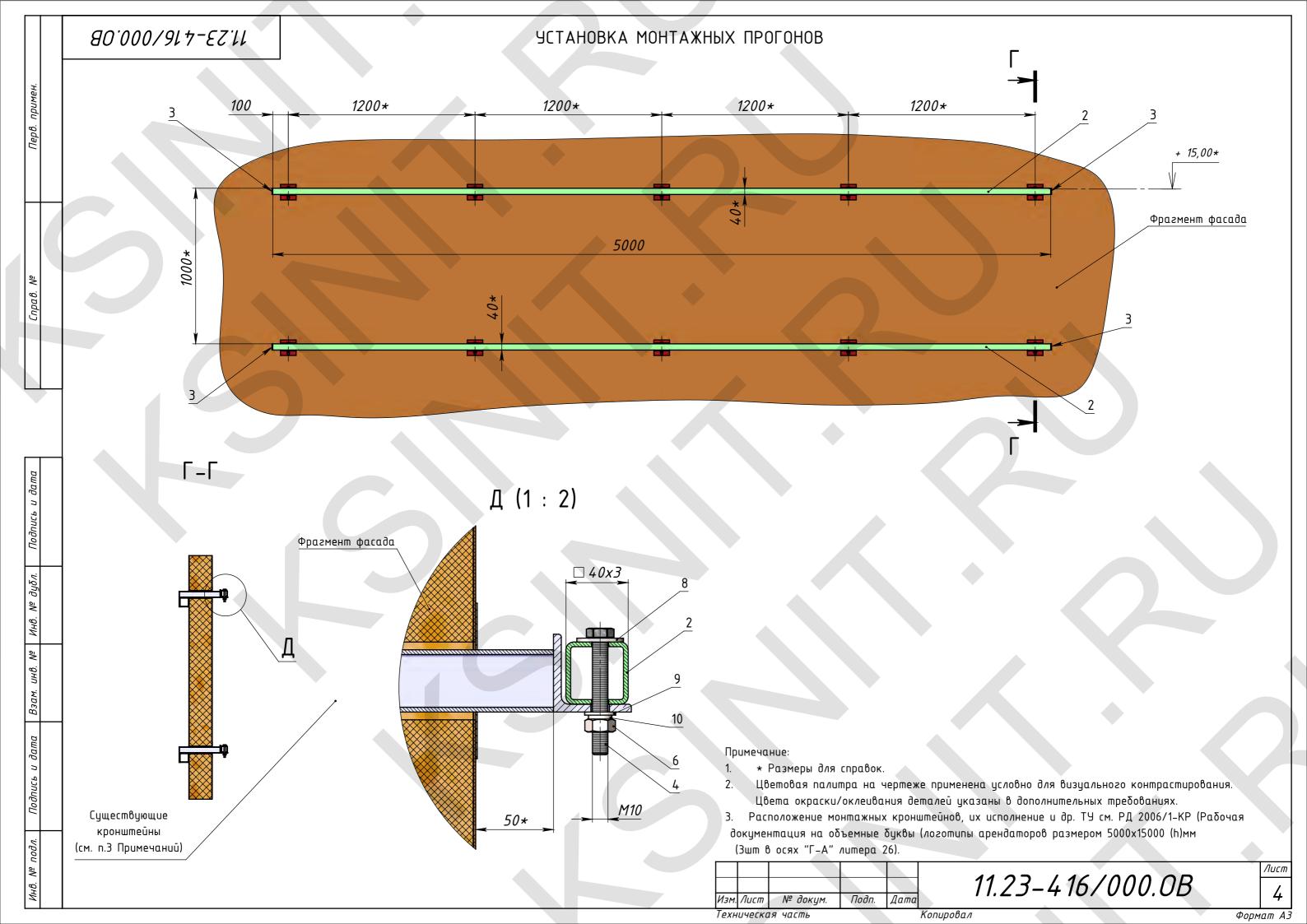
- 4.1. Защити металлоконструкций от коррозии производить на заводе-изготовителе.
- 4.2. Поверхности металлоконструкций должны иметь третью степень очистки от окислов по ГОСТ 9.402-2004 и первую степень обезжиривания. Работы по окраске конструкций производить в соответствии со СНиП 2.03.11-85 "Правила производства и приемки работ. Защита стальных конструкций от коррозии". Качество лакокрасочного покрытия должно соответствовать V классу по ГОСТ 9.032-74*.
- 4.3. Места монтажных стыков после окончательного закрепления, а также элементы конструкций
- с нарушением заводской окраски, окрасить покрытием, указанным в тех. требованиях чертежей.

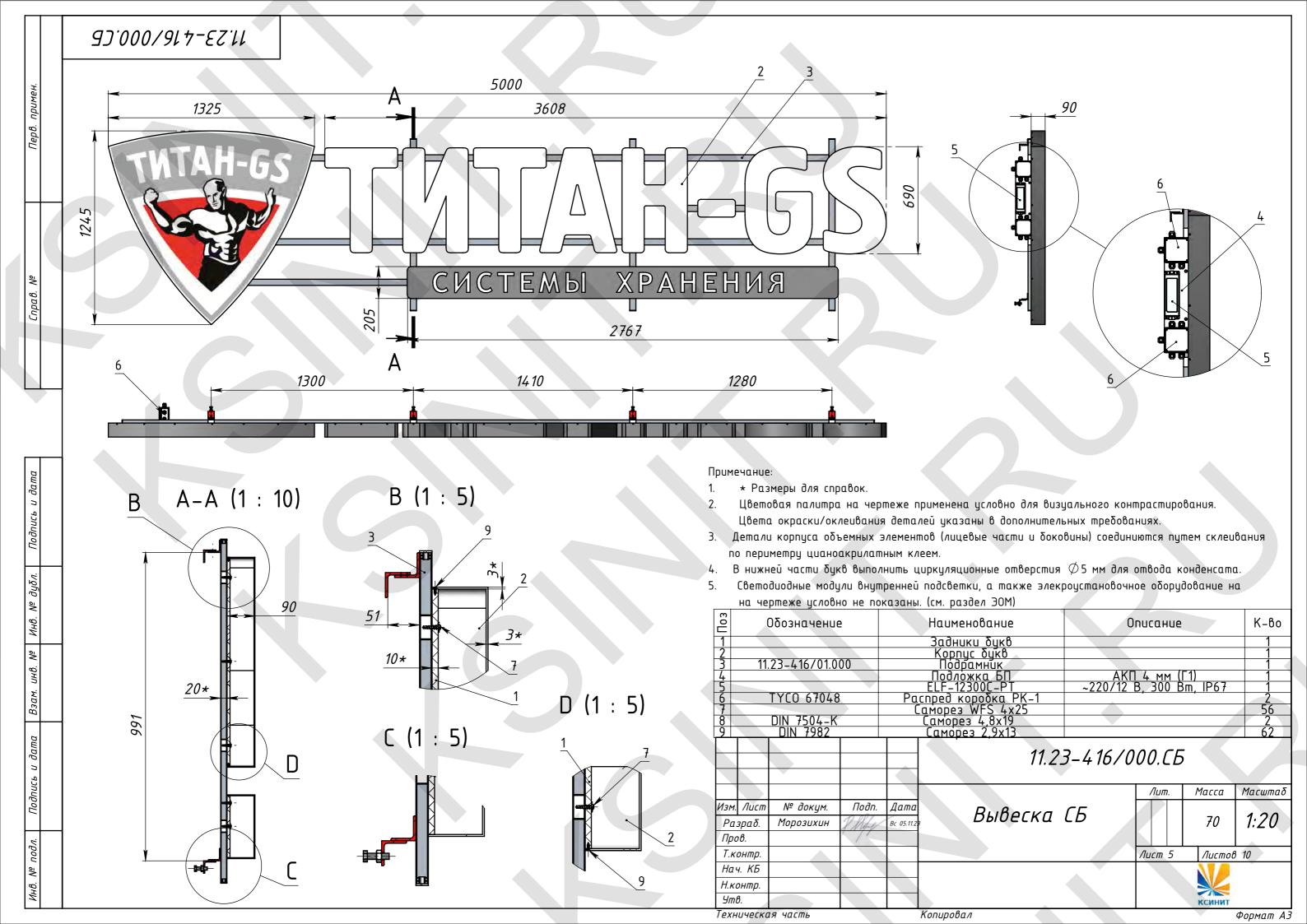

5. ЭКСПЛУАТАЦИЯ И ОБСЛУЖИВАНИЕ

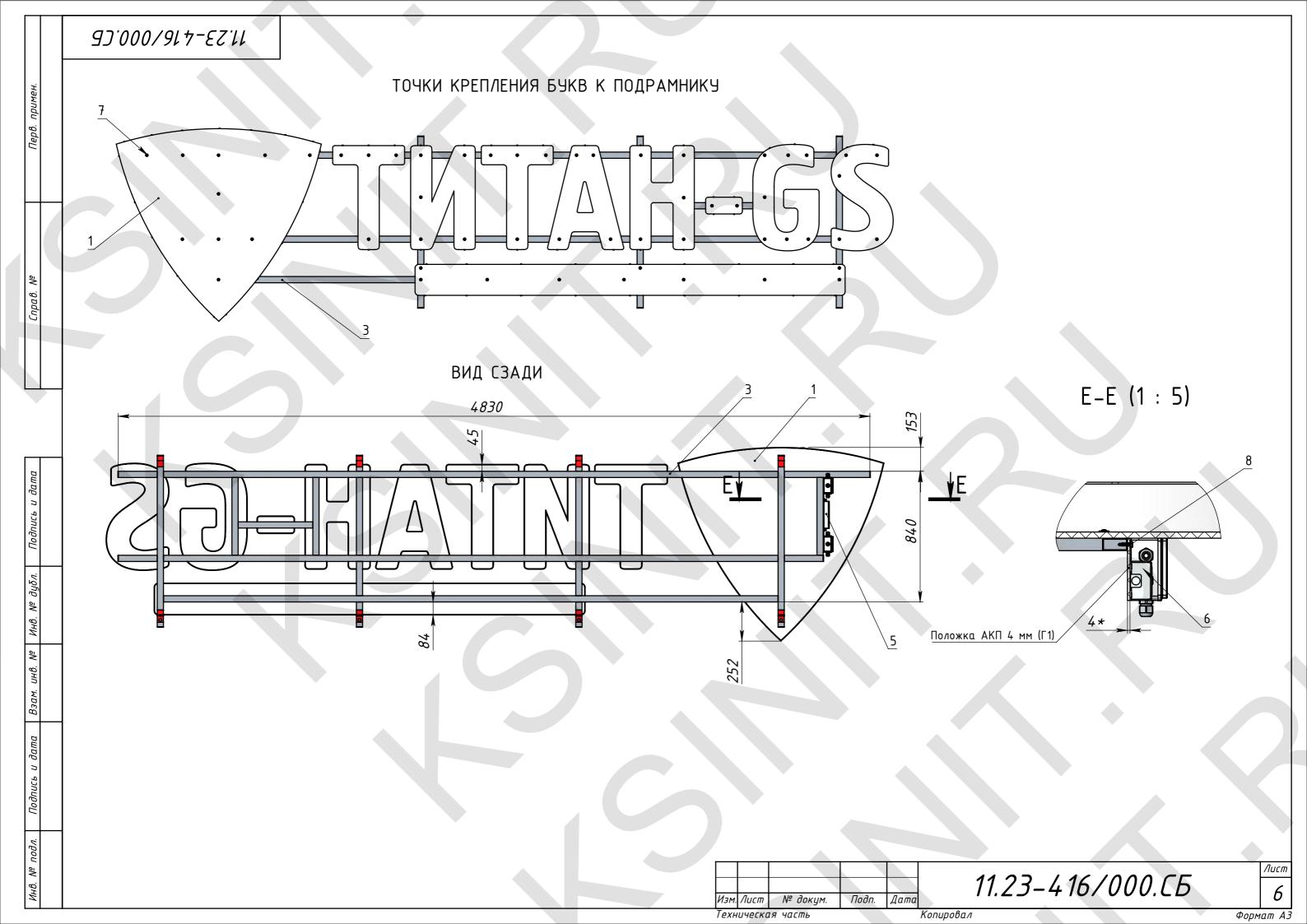

- 5.1 Любые работы по эксплуатации и обслуживанию установки проводить в соответствии с требованиями СНиП 12-03-2001 и 12-04-2002.
- 5.2 Производить визуальный контроль целостности лакокрасочного покрытия, выявление остаточной деформации, а также состояние сварных соединений конструкций с периодичностью не реже одного раза в год.
- 5.3. Подключение изделия к питающей электросети должно осуществляться электротехническим персоналом заказчика в соответствии с Правилами устройства электроустановок (ПУЗ). Во внешней линии электропитания должна быть предусмотрена возможность отключения установки от внешней сети через автоматический выключатель и УЗО согласно ПЧЗ
- 5.4. Эксплуатация изделия должна осуществляться подготовленным электротехническим персоналом в соответствии с требованиями «Правил техники безопасности при эксплуатации электроустановок» и требованиями настоящей инструкции. Периодичность технического обслуживания устанавливает владелец.

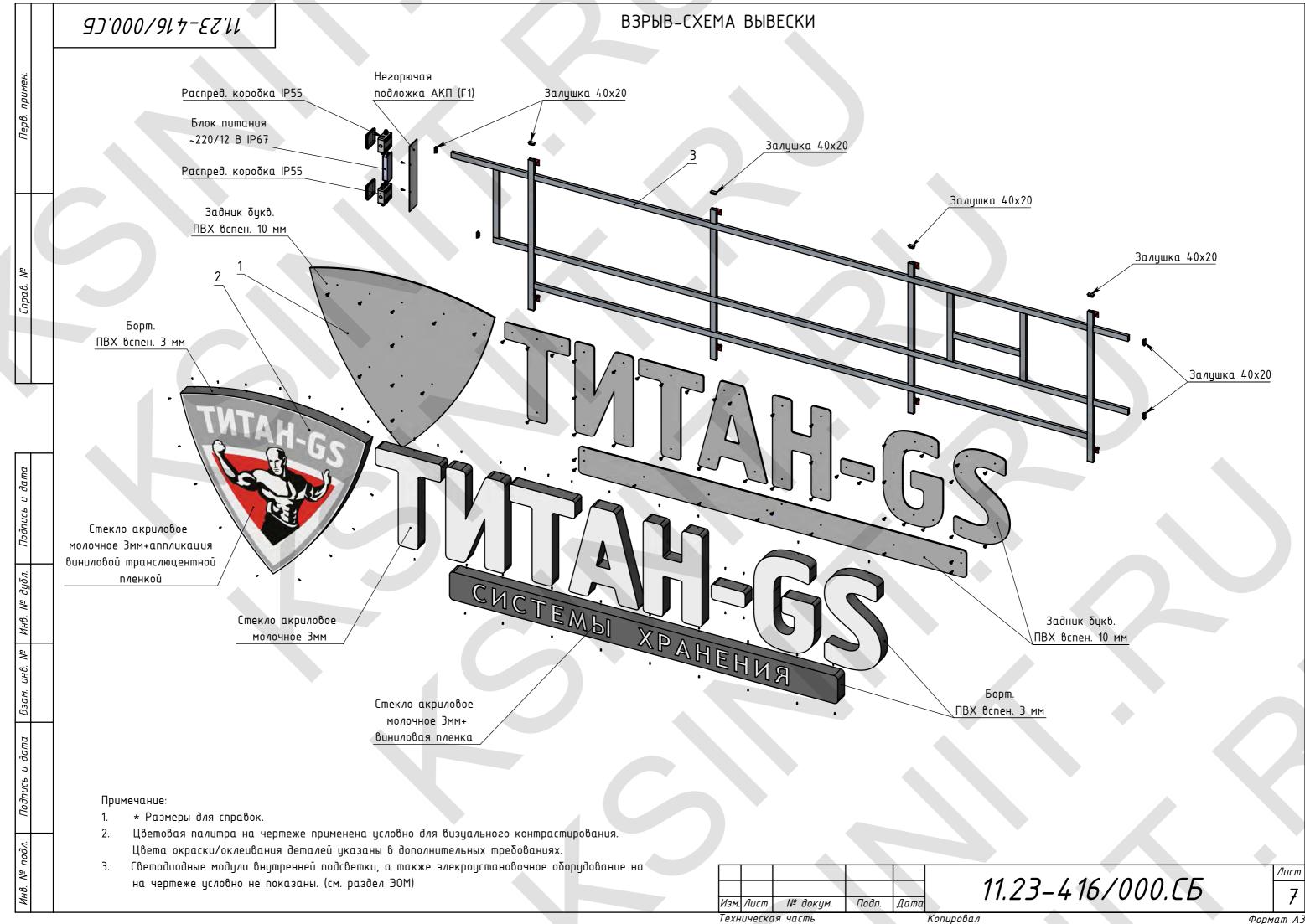
F						11.23-416/0	00.0Д		
Из	RM.	Лист	№ докум.	Подп.	Дата	Адрес: г. Владивосток, ул. Калинина, 8, Т	ВК "Калин	на Молл", м	често В6
И	cno	лнил	Морозихин	I May	Bc 05.11.2.	Рекламно-информационная	Стадия	Лист	Листов
	Про ГИІ					вывеска "TИТАН-GS. Гардеробные системы"	РД	2	10
Н	Іач.	КБ						N/A	V
		нтр.				Общие данные			
9	Ітв.							ксинит	


Копировал Формат АЗ

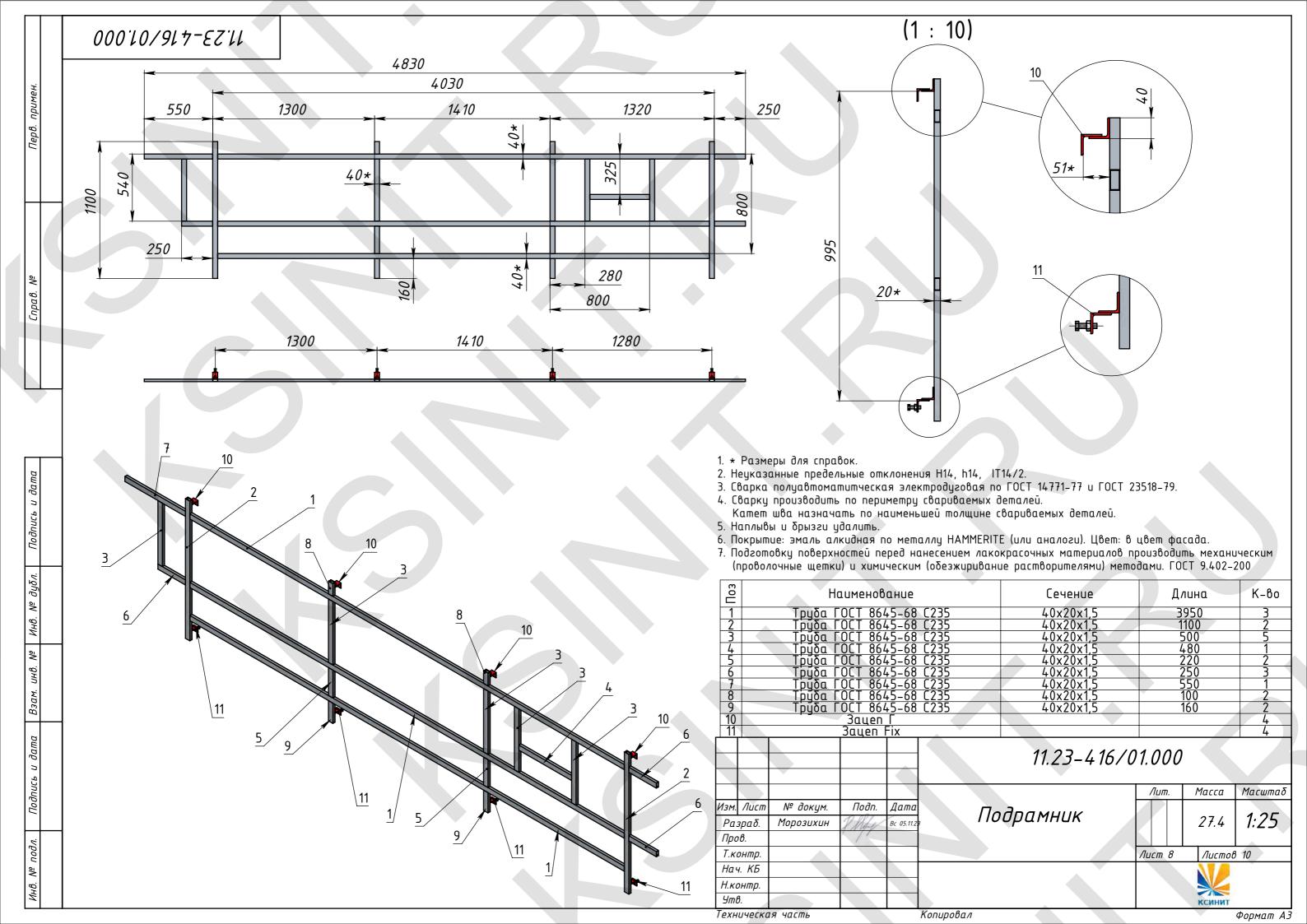

B (1:5)

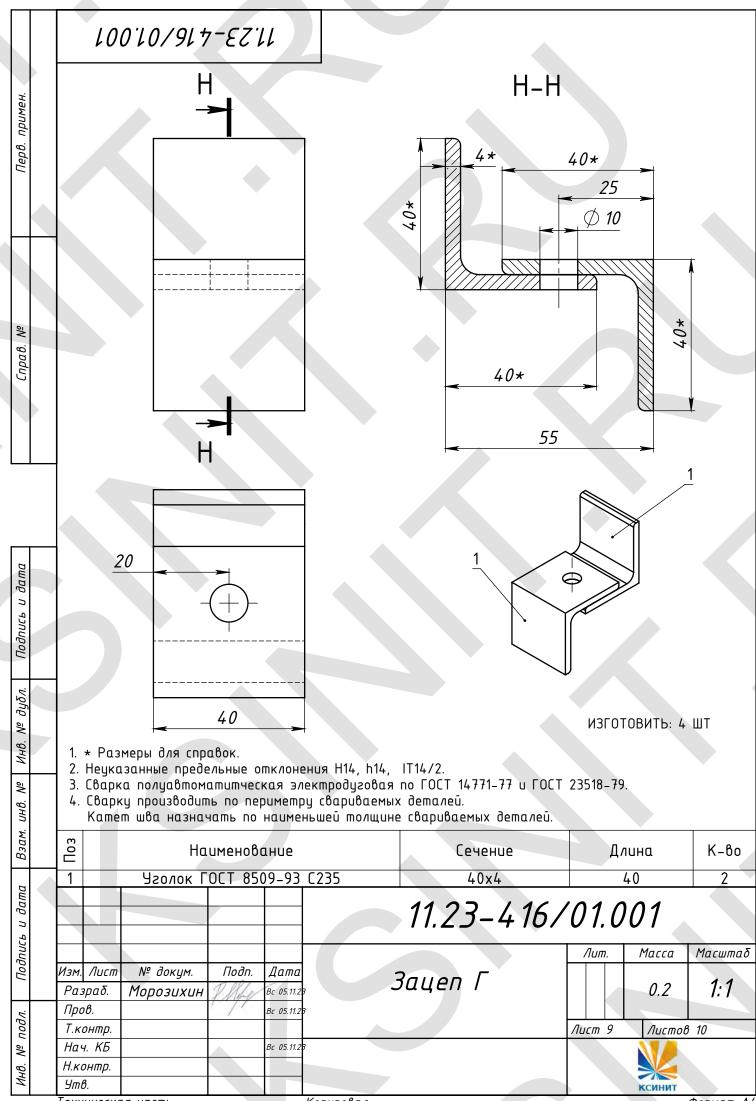


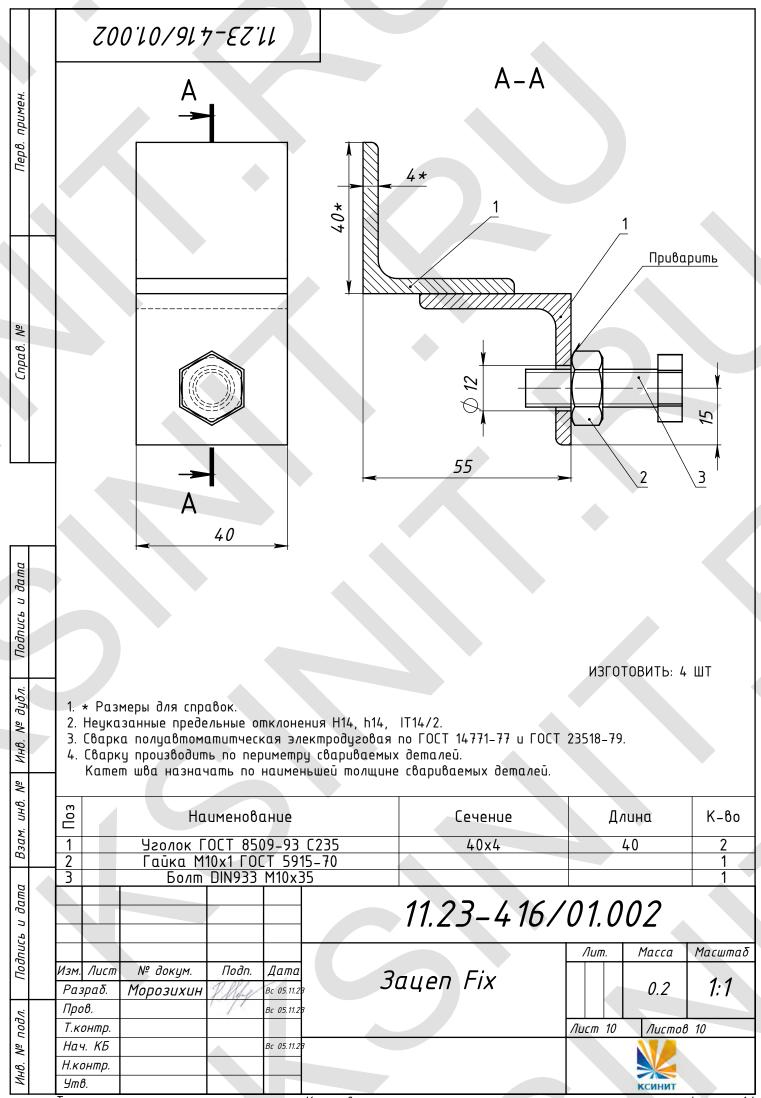

Примечание:


- * Размеры для справок.
- Цветовая палитра на чертеже применена условно для визуального контрастирования. Цвета окраски/оклеивания деталей указаны в дополнительных требованиях.
- 3. Светодиодные модули внутренней подсветки, а также элекроустановочное оборудование на на чертеже условно не показаны. (см. раздел ЭОМ)

				Ÿ					
Поз	Обозначение			Наименование	0	писание		К-во	
1 2	11.23-416/000.СБ			Вывеска СБ ба ГОСТ 8645-68 С235	Вывеска СБ а ГОСТ 8645-68 С235 40х40х3 L=5000				
3 4	DIN 933			Заглушка 40х40 Болт М10х75 8.8	n/la	стикова	Я	10	
5 6 7	DIN 933		Γαυ	<u> Болт М8х75 8.8</u> <u>ка М10 ГОСТ 5915-70</u> ика М8 ГОСТ 5915-70				10	
8			Шаў Шай	δα C.10 ΓΟCT 6958-78				10 10	
10 11 12			<u>Шаі</u> Шаі Шаі	ιδα C.8 ΓΟCΤ 11371–78				10	
13				<u>ūδα 8 ΓΟΣΤ 6402-70</u>				4	
H				1	11.23-416/0	00.0B			
				Адрес: г. Владивосток, ул. К	плининп 8 Т	RK "Kazııı	на Молл"	Mermo B6	
Изм. Ли	ист № докум.	Подп.	Дата		andiidiia, o, i	Dit itanai	,	ricello bo	
Исполн		I May	Bc 05.11.2	Рекламно-информац	понная	Стадия	Лист	Листов	
Пров. ГИП		1		вывеска "TNTAH-GS. Гардеробные		РД	3	10	
Нач. К Н.конп				Общий вид <					
Утв.							ксинит		
Технич	еская часть		_	Копировал				Формат А.	







Формат АЗ

Перв. применен	
Справ. №	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

РЕКЛАМНО-ИНФОРМАЦИОННАЯ ВЫВЕСКА "TИTAH-GS. Гардероδные системы"

Габаритные размеры: 5000x1245 мм Адрес: г. Владивосток, ул. Калинина, 8, ТВК "Калина Молл", место Вб

ШИФР 11.23-416/РР

ГИП:

инв.№ подл.

Морозихин Р.В.

Представитель заказчика:

2023 г.

Перв. применен
3. No

Cnpaß. Nº

Подпись и дата

№инв. №дубл.

Взамен инв.

Подпись и дата

инв.№ подл.

Оглавление

<u>1.</u>	Исходные данные для проектирования	3
<u>2.</u>	Исходные данные для расчета	3
<u>3.</u>	Определение ветровой нагрузки	4
<u>4.</u>	Определение снеговой нагрузки	6
<u>5.</u>	Расчетная схема	7
<u>6.</u>	Расчеты и анализ результатов	8
<u>7.</u>	Вывод	11
8.	Список использиемой литератиры:	11

Рис. 1 Фотопривязка

	Изм.	Лист	№ докум	Подпись.	Дата	11.23-416/PP			
ľ	Разрі	αδ.	Морозихин	V III d	чт 09.11.23		Лит	Лист	Листов
Ī	Прове	р.	1	. 14 197		Рекламно-информационная вывеска	РД	2	16
ľ				/		«ТИТАН-GS. Гардеробные системы»		N.	
	Н кон	тр.							
	Утв.							ксини	

РАСЧЕТ КОНСТРУКЦИИ РЕКЛАМНО-ИНФОРМАЦИОННОЙ УСТАНОВКИ

1. Исходные данные для проектирования

- 1.1. Район строительства: г. Владивосток
- 1.2. Tun конструкции фасадная вывеска.
 - 1.3. Конструктивное решение:
- 1.4. Корпус объемных световых букв выполнен из молочного акрилового листа 3 мм (лицевая часть) и вспененного ПВХ 3 мм (боковая часть). Соединение лицевых и боковых частей осуществляется методом проклейки. Склейку деталей световых элементов производить клеем цианоакрилатным клеем. Задник букв выполнен из вспененного ПВХ 10 мм. Соединение корпус букв и задников осуществляется при помощи саморезов с потайной головкой 2,9х13 DIN 7982. Буквы через задники крепятся к подрамнику саморезами 4,2х25 DIN 968.

Подрамник – сварной. Выполнен из трубы 40x20x1,5 ГОСТ 8645-68 С235. Окрашен на заводе-изготовителе.

Вывеска монтируется на монтажную подсистему (горизонтальные направляющие из трубы 40х40х3 ГОСТ 8639-82 С235) при помощи зацепов на подрамнике. Верхние зацепы фиксируются на направляющих при помощи болтового соединения. Нижние зацепы фиксируются "в распор".

2. Исходные данные для расчета.

- 2.1. Высота вывески над уровнем земли: z= 15 м
- 2.2. Габаритные размеры секции: 5000х1245 мм
- 2.3. Масса вывески М=70 кг

и дата

Nodybn

Nound

UHB

Взамен

и дата

MHB.Nº,

- 2.4. Площадь δ ук θ : $S_B = 3 \text{ M}^2$
- 2.5. Расчетные сопротивления стали, кгс/см².....Ry=2350, Rs=1350, Ru=3600, Rbp=4350;
- 2.6. Расчетные сопротивления металла сварных швов, кгс/см²Rwf=1850, Rwun=4200;

						Лист
					11.23-416/PP	2
Изм.	Лист	№ докум	Подпись.	Дата		

3. Определение ветровой нагрузки

Для вычисления нагрузки согласно [1] приняты следующие данные:

- Москва IV ветровой рай-н; II-снеговой район
- Нормативное значение ветрового давления $W_0 = 0.48 \text{ к}\Pi \text{ а} \text{ (табл. 11.1 } \{1\});$
- Tun местности A
- Приведенные расчетные размеры установки: L_n= 4,5 м, H_n= 1,3 м

Нормативное значение средней составляющей ветровой нагрузки:

Фасадные рекламные конструкции следует относить к ограждающим конструкциям здания.

Для элементов ограждения и узлов их крепления необходимо учитывать пиковые положительные w+ и отрицательные w_ воздействия ветровой нагрузки, нормативные значения которых определяются по формуле (см. п. 11.2 [1]):

$$W_{+(-)} = W_0 * k(z_e) * [1 + \xi(z_e)] * c_{\mathrm{p},\pm} * v_\pm$$
 , ade

 W_0 – нормативное значение давления ветра (см. 11.1.4 [1]),

 Z_e – эквивалентная высота (см. 11.1.5 [1]),

 $k(z_e)$ и $\xi(z_e)$ – коэффициенты, учитывающие, соответственно, изменение давления и пульсаций давления ветра на высоте ze (см. 11.1.6 и 11.1.8);

 $c_{
m p,\pm}$ — пиковые значения аэродинамических коэффициентов положительного давления (+) или отсоса (-);

 u_{\pm} — коэффициенты корреляции ветровой нагрузки, соответствующие положительному давлению (+) и отсосу (-); значения этих коэффициентов приведены в таблице 11.8 в зависимости от площади ограждения A, с которой собирается ветровая нагрузка.

$$k_Z = k_{10} * \left(\frac{z}{10}\right)^{2\alpha} = 1 * \left(\frac{15}{10}\right)^{2*0,2} = 1,2$$

 $k_{10}=1$; z=15 3; $\alpha=0.2$

и дата

N°GUÐN

Nound

и дата

$$\xi_z = \xi_{10} * (\frac{z}{10})^{-\alpha} = 0.76 * (\frac{15}{10})^{-0.2} = 0.7$$

ξ₁₀=0,76 (см. Таблицу 11.4 [1])

Изм. Лист № докум Подпись. Дата	<i>Лист</i> 4
---------------------------------	---------------

Таблица 11.8

A, м ²	<2	5	10	>20
V ₊	1,0	0,9	0,8	0,75
v_	1,0	0,85	0,75	0,65

$$v_{\pm} = 0.97$$

Для отдельно стоящих прямоугольных в плане зданий значения коэффициентов $c_{\mathrm{p},\pm}$ приведены в В.1.17 приложения В.1.

Для стен прямоугольных в плане зданий пиковое положительное значение аэродинамического коэффициента $c_{\mathrm{p},+}=1.2$

Таблица В.12

и дата

Nº∂y5n.

Nound

Подпись и дата

MHB.Nº,

Участок	A	В	С	D	E
c _{p,-}	-2,2	-1,2	-3,4	-2,4	-1,5

ПЛАН КРОВЛИ

CTEHA

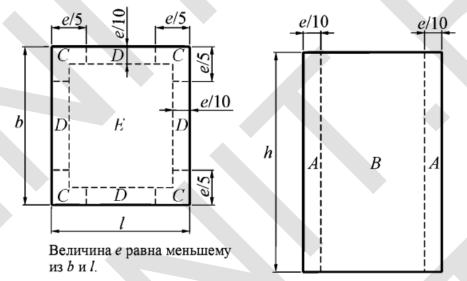


Рисунок В.24

$$W_{+(-)} = W_0 * k(z_e) * [1 + \xi(z_e)] * c_{\mathrm{p},\pm} * v_\pm = 0.48 * 1.2 * (1 + 0.7) * 1.2 * 0.97 = 1.14$$
 кПа

Полная приведенная расчетная ветровая нагрузка:

$$W_{\text{pac4}} = W_{+(-)} * y$$
, ade

у=1,4 – коэффициент надежности по нагрузке (п.11) [1]

11.23-416/PP	L							
								Лист
Man Aucm No dayun Radayu Ilama							11.23-416/PP	Γ
NSP. /IUCIII IV UUKYR TUUTIULE. ZUITU		Изм.	Лист	№ докум	Подпись.	Дата)

$$W_{\text{pacy}} = 1.14 * 1.4 = 1.6 \text{ k}\Pi\alpha = 163 \text{ k}\text{2c/m}^2$$

Полная расчетная ветровая нагрузка рекламную конструкцию:

$$W_{\text{ветр}} = W_{\text{расч}} * S_{\text{B}} = 163 * 3 = 489$$
 кас

4. Определение снеговой нагрузки

Полное расчетное значение снеговой нагрузки S на горизонтальную проекцию покрытия следцет определять по формуле:

$$S = S_0 * A * \gamma_{f2}$$

где S_0 - нормативное значение веса снегового покрова на 1 м 2 горизонтальной поверхности земли, определяется по формуле п. 10.1

$$S_0 = c_e * c_t * \mu * S_q$$

 S_a =1,2 кПа – вес снегового покрова на 1 м 2 горизонтальной поверхности для IIснегового района

μ– коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый в соответствии с пл.10.4

 $\mu=1$

и дата

Nºdyōn

NounB

и дата

 c_{e^-} коэф., учитывающий снос снега с покрытий здания под действием ветра или иных факторов

$$c_e = (1.2 - 0.4 * \sqrt{k})(0.8 + 0.002 * l_c)$$

$$k_Z = k_{10} * \left(\frac{z}{10}\right)^{2\alpha} = 1 * (15)^{2*0,2} = 1,2$$

для типа местности **B**: $\alpha = 0.2$; $k_{10} = 1$;

z=15- высота расчетной плоскости от уровня земли

$$l_c = 2 * b - \frac{b^2}{l} = 2 * 0.11 - \frac{0.11^2}{5.0} = 0.22$$

l=5 м – длина установки

b=0,11 - приведенная ширина установки (глубина букв+толщина рамы)

$$c_e = (1.2 - 0.4 * \sqrt{k})(0.8 + 0.002 * l_c) = (1.2 - 0.4 * \sqrt{1})(0.8 + 0.002 * 0.22) = 0.64$$

 c_t =1 - термический коэффициент

$$S_0 = c_e * c_t * \mu * S_g = 0$$
,64 * 1 * 1 * 1,2 кПа = 0,8 кПа= 82 кгс/м²

 $\Upsilon_{\rm f2}$ - коэффициент надежности по снеговой нагрузке

 $A = b + L = 0,11 + 5 = 0.6 \text{ м}^2 - площадь боковой поверхности, воспринимающей снеговую$ нагрузку

Изм.	Лист	№ докум	Подпись.	Дата

11.23-416/PP

Лист

Расчетная снеговая нагрузка на информационную установку:

$$S_{
m cher} = S_0 * A * \gamma_{f2} = 82 * 0.6 * 1.4 = 70$$
 кгс

5. Расчетная схема.

Расчет конструкций и оснований по предельным состояниям 1-й и 2-й групп следует выполнять с учетом неблагоприятных сочетаний нагрузок или соответствующих им усилий.

Расчет на совместное действие ветровой, снеговой и весовой нагрузок проводится на основе метода конечных элементов с применением десяти узлового элемента в форме тетраэдра с серединными узлами, каждый из узлов которого имеет шесть степеней свободы.

Расчетная программа: COSMOSWORKS.

Приложенные нагрузки:

- 1) Ветровая нагрузка $W_{
 m BeTp}$ =489 кгс
- 2) Снеговая нагрузка $S_{
 m CHer}$ = 70 кгс
- 3) Масса секции М=70 кгс

и дата

Nºdyōn

Nound

Подпись и дата

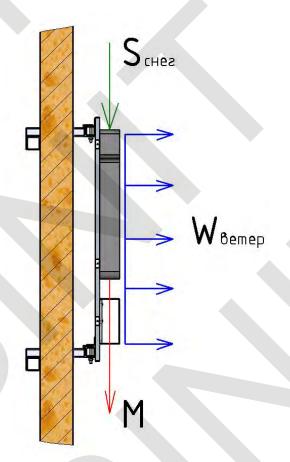


Рис.З Расчетная схема

						7		Лист
						11.23-416/PP		7
Изм.	Лист	№ докум	Подпись.	Дата				/

6. Расчеты и анализ результатов

Приложение 01- схема нагружения

Приложение 02- сетка конечных элементов

Приложение 03- распределение возникающих напряжений

Приложение 04- распределение перемещений элементов

Приложение 05- реакции в точках крепления

В <u>приложении 03</u> приведена иллюстрация распределения эквивалентных напряжений, построенная на основе теории Мизеса.

Из результатов расчета следует, что максимальные эквивалентные напряжения в металлоконструкции, составляющие 1500 кгс/см2, не превышают расчетного со-противления выбранной марки стали Ry=2350 кгс/см2 и расчетного сопротивления металла сварных швов Rwf=1850 кгс/см2 согласно СНиП II-23-81* "Стальные конструкции".

В <u>приложении 04</u> приведена иллюстрация распределений перемещений узлов металлоконструкции под действием расчетных нагрузок.

Максимальное перемещение составляет 5 мм

При действии расчетных нагрузок максимальное перемещение узлов:

1) для балки:

и дата

Nºdyōn.

Nound

UHB

Взамен

и дата

Инв.№ подл.

Fmax=5 MM
$$F_{max}/L= 5/1320=0,004 < 1/150$$

В приложении 05 приведена иллюстрация возникающих сил реакций в местах креплений (болтовое соединение M10).

Максимальные силы реакций:

N=1160 H (осевая нагрузка) $V_{\text{rez}} = \sqrt{37^2 + 690^2} = 690$ H, (поперечная нагрузка)

6.1 Расчет болтов М10 (фиксация прогонов на кронштейнах) ИСХОДНЫЕ ДАННЫЕ:

Осевое усилие на болты: Fw = 1160 Н.

Поперечное усилие на болты: Qw = 690 H.

Марка стали болтов: 8.8. Допускаемое напряжение:

- на растяжение: [σ]20 = 320 MПа;

на срез: [т]20 = 160 МПа.

Номинальный диаметр резьбы болта: D = 10 мм.

Шаг резьбы болта: P = 1.5 мм.

Диаметр резьбы по впадинам: d3 = 8.16 мм.

							7
							/lucm
					11.23-416/PP		0
Изм.	Лист	№ докум	Подпись.	Дата	,		8
•							

и дата Подпись Nºdyōn Nound UHB Взамен и дата MHBNO Коэффициент полноты резьбы:

болта: K1 = 0.75; гайки: K1 = 0.875.

Коэффициент деформации витков: Кт = 0.6.

Коэффициенты наличия смазки:

 $\zeta = 0.18$; $\zeta 1 = 0.37$.

РЕЗУЛЬТАТЫ РАСЧЕТА БОЛТОВ:

Плошадь сечения болта:

 $Aw = \frac{1}{4}\pi(d32 - d2) = \frac{1}{4}\pi(8.162 - 02) = 52.3 \text{ mm}2.$

Площадь сечения тела болта:

 $AD = \frac{1}{4}\pi(D2 - d2) = \frac{1}{4}\pi(102 - 02) = 78.5 \text{ mm}^2$.

Момент сопротивления сечения кричению:

 $Ww = 1/16\pi D3 (1 - d4/D4) = 1/16\pi \times 8.163 (1 - 04/8.164) = 106.6 \text{ mm}3.$

Крутящий момент при затяжке:

 $M\kappa = \zeta FwD/z = 0.18 \times 1160 \times 10/(1) = 2088 \text{ Hmm}.$

Момент на ключе для обеспечения усилия Fw:

 $M\kappa n = \zeta 1FwD/z = 0.37 \times 1160 \times 10/(1) = 4292 \text{ Hmm} = 0.4 \text{ k2c*m} (\delta e3 \text{ cma3ku}).$

Напряжения среза по резьбовой части:

 $\tau w = Qw/(Awz) = 690/(52.3x1) = 13.2 MПа < 160 MПа – выполнено.$

Напряжения среза тела болта:

 $\tau w = Qw/(ADz) = 690/(78.5x1) = 8.8 MПа < 160 MПа - выполнено.$

Напряжения растяжения в болте:

 $\sigma w = Fw/(Awz) = 1160/(52.3x1) = 22.2 MПа < 320 MПа - выполнено.$

Напряжения среза резьбы в болте:

 $\tau p = Fw/(\pi d3hzK1Km) =$

= $1160/(\pi \times 8.16 \times 10 \times 1 \times 0.75 \times 0.6)$ = **10.1 MNa < 160 MNa - выполнено.**

Напряжения кручения в болте:

 τ sw = Mк/Ww = 2088/106.6 = **19.6** МПа < **160** МПа - выполнено.

Результаты расчета гаек

Напряжения среза резьбы в гайке:

 $\tau_p = F_w/(\pi DhzK1Km) = 1160/(\pi \times 10 \times 10 \times 1 \times 0.875 \times 0.6) = 7 MΠα < 160 MΠα - θыполнено.$

Коэффициенты запаса болта M10x1.5

Растяжение:k = 14.41Срез резьбы:k = 15.84Кручение:k = 8.16Срез гайки:k = 22.86Срез болта:k = 12.12

6.2 Расчет фиксирующих болтов М8 (фиксация зацепов вывески на прогонах)

Болты работают на срез от ветровой нагрузки.

$$Q_W = \frac{W_{\text{BeTp}}}{\kappa}$$

Где к- количество болтов,равное 4 шт

 $Q_W = 4890 \text{ H/4} = 1223 \text{ H}$

							Лист
						11.23-416/PP	0
1	13м.	Лист	№ докум	Подпись.	Дата		9

Коэффициенты наличия смазки: $\zeta = 0.18; \zeta_1 = 0.37.$ РЕЗУЛЬТАТЫ РАСЧЕТА БОЛТОВ: Площадь сечения болта: $A_w = \frac{1}{4}\pi(d_3^2 - d^2) = \frac{1}{4}\pi(6.47^2 - 0^2) = 32.9 \text{ mm}^2.$ Площадь сечения тела болта: $A_D = \frac{1}{4}\pi(D^2 - d^2) = \frac{1}{4}\pi(8^2 - 0^2) = 50.2 \text{ mm}^2$. Момент сопротивления сечения кручению: $W_w = 1/16\pi D^3 (1 - d^4/D^4) = 1/16\pi \times 6.47^3 (1 - 0^4/6.47^4) = 53.2 \text{ mm}^3$. Крутящий момент при затяжке: $M_k = \zeta F_w D/z = 0.18 \times 1000 \times 8/(1) = 1440 \text{ Hmm}.$ Момент на ключе для обеспечения усилия Г": $M_{\kappa_0} = \zeta_1 F_{\nu} D/z = 0.37 \times 1000 \times 8/(1) = 2960 \text{ Hmm} = 0.3 \text{ k2c*m} (\delta e 3 \text{ cma3ku}).$ и дата Напряжения среза по резьбовой части: $\tau_w = Q_w/(A_w z) = 1223/(32.9 x1) = 37.2 M\Pi a < 160 M\Pi a - выполнено.$ Напряжения среза тела болта: $\tau_w = Q_w/(A_0 z) = 1223/(50.2 x1) = 24.4 M\Pi a < 160 M\Pi a - выполнено.$ Напряжения растяжения в болте: $\sigma_w = F_w/(A_w z) = 1000/(32.9 x1) = 30.4 МПа < 320 МПа – выполнено.$ Nºdyōn Напряжения среза резьбы в болте: $\tau_p = F_w/(\pi d_3 hz K_1 K_m) = 1000/(\pi \times 6.47 \times 8 \times 1 \times 0.75 \times 0.6) = 13.7$ ΜΠα < 160 ΜΠα – выполнено. NounB Напряжения кручения в болте: $\tau_{sw} = M_{\kappa}/W_{w} = 1440/53.2 = 27.1 МПа < 160 МПа - выполнено.$ Результаты расчета гаек Напряжения среза резьбы в гайке: $\tau_{\rm o} = F_{\rm w}/(\pi Dhz K_1 K_{\rm m}) = 1000/(\pi \times 8 \times 8 \times 1 \times 0.875 \times 0.6) = 9.5 MΠα < 160 MΠα - выполнено.$ Коэффициенты запаса болта M8x1.25 и дата k = 10.53Растяжение: Срез резьбы: k = 11.68k = 5.90Кручение: Срез гайки: k = 16.84k = 4.30Срез болта: MHBNO 11.23-416/PP Лист № докум Подпись.

/lucm

10

ИСХОДНЫЕ ДАННЫЕ:

на растяжение: [σ]²⁰ = 320 МПа;

болта: K₁ = 0.75; гайки: K₁ = 0.875.

– на срез: [τ]²⁰ = 160 МПа.

Марка стали болтов: 8.8. Допускаемое напряжение:

Шаг резьбы болта: Р = 1.25 мм.

Коэффициент полноты резьбы:

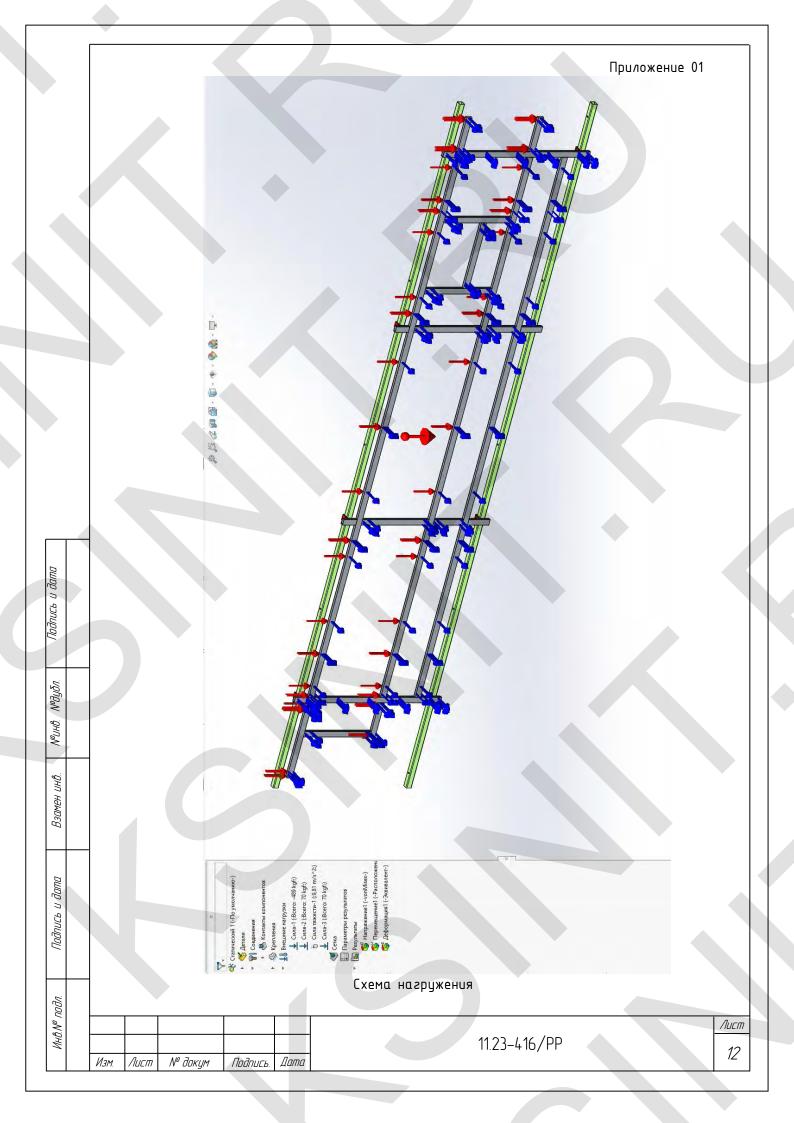
Осевое усилие на болты: F, = 1000 Н. (сила преднатяга)

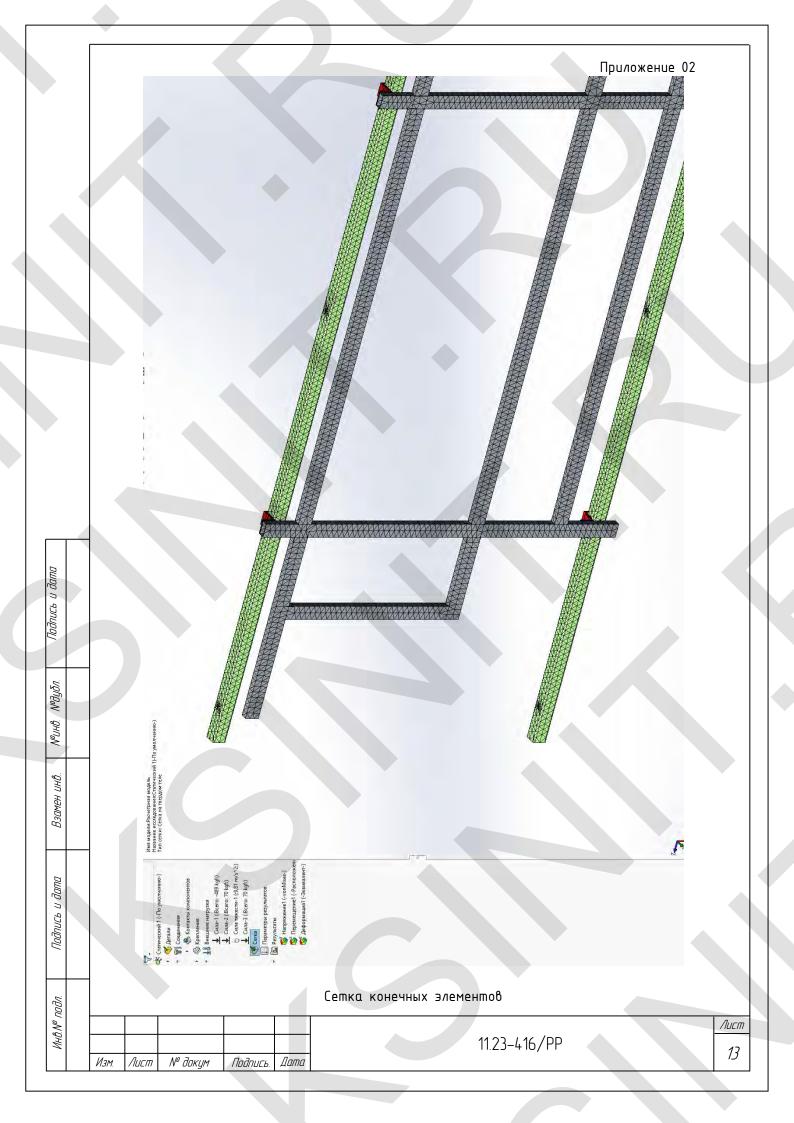
Поперечное усилие на δ олты: $Q_w = 1223 \text{ H}.$

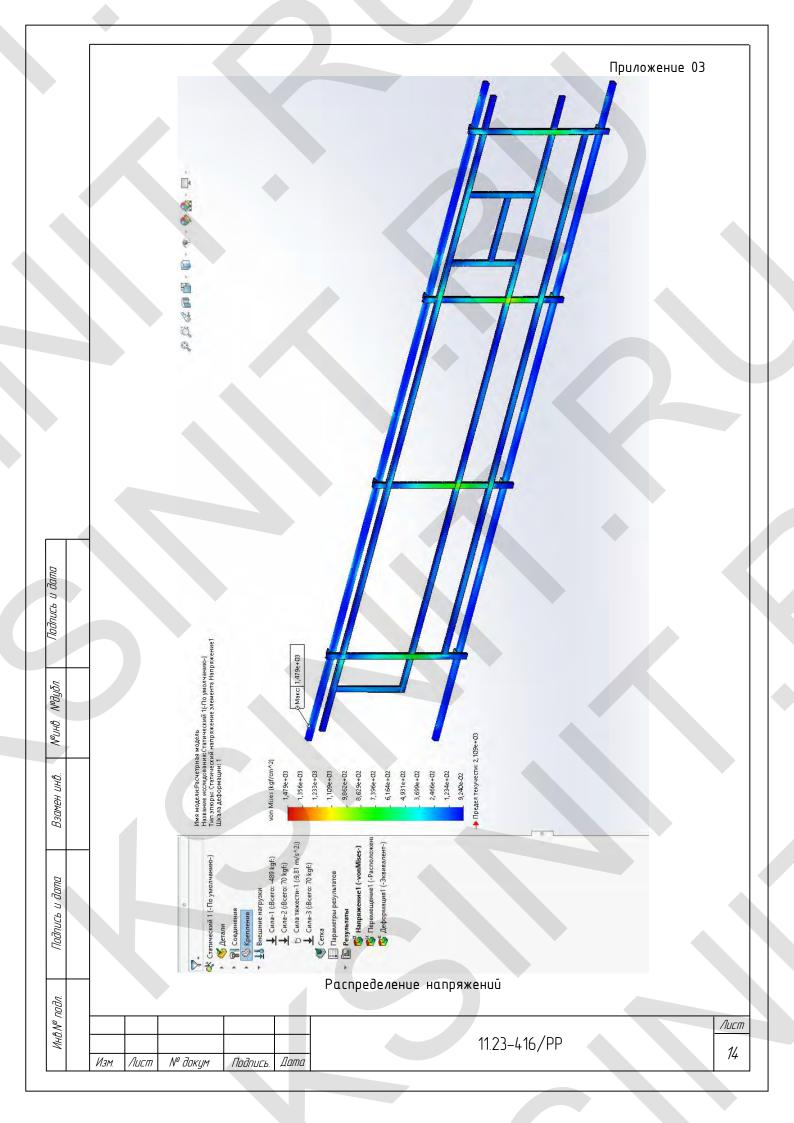
Номинальный диаметр резьбы болта: D = 8 мм.

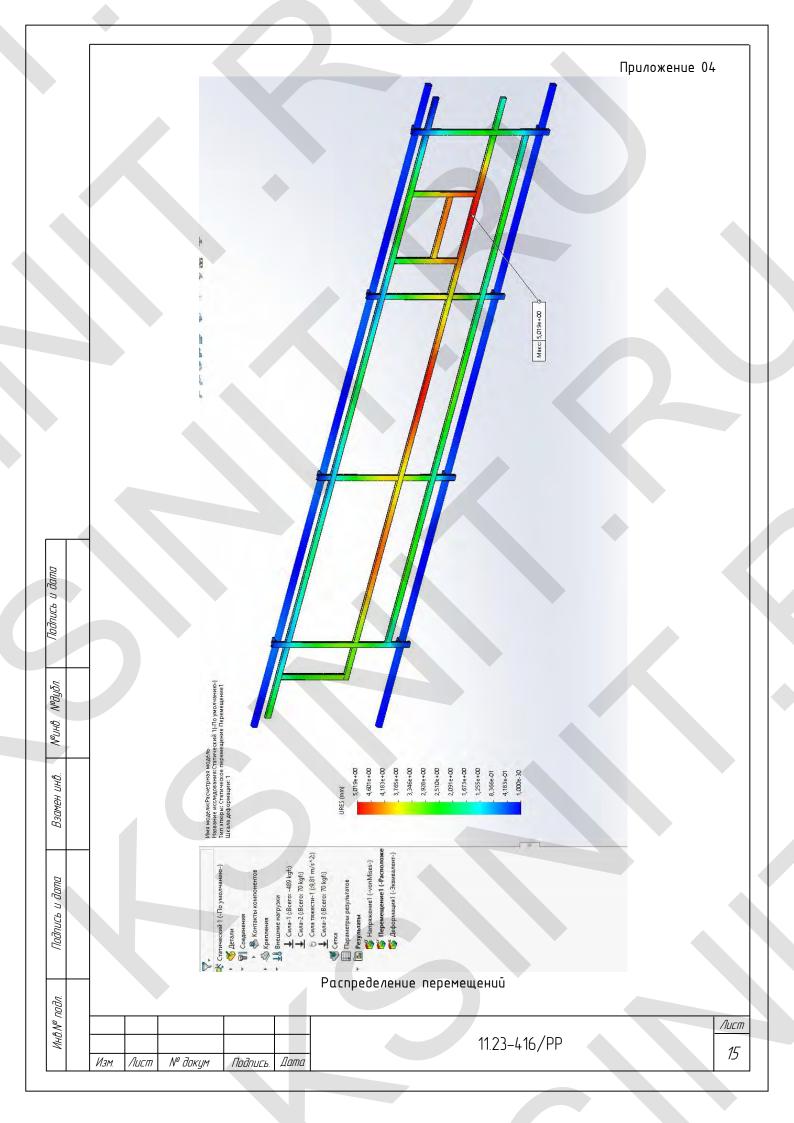
Диаметр резьбы по впадинам: $d_3 = 6.47$ мм.

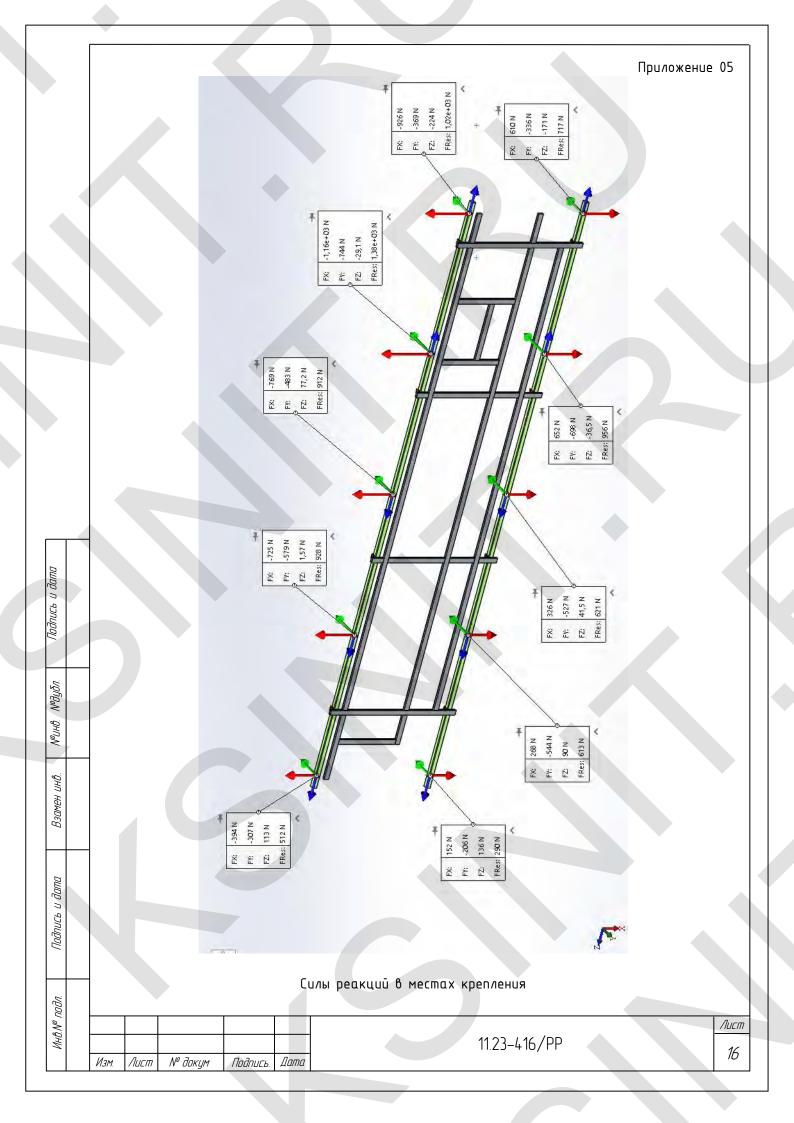
Коэффициент деформации витков: $K_m = 0.6$.


7. Вывод


Проведенные расчеты показали, что основные несущие элементы конструкций рекламной установки удовлетворяют требованиям СНиПов и ГОСТов на жесткость и прочность. Разработанная проектная документация соответствует техническим условиям и требованиям.


8. Список используемой литературы:


- [1] СНиП 2.01.07-85 "Нагрузки и воздействия" СП 20.13330.2016 (2016);
- [2] СНиП II-23-81 "Стальные конструкции" (1990);
- [3] -Алямовский А. А. SolidWorks/COSMOSWorks. Инженерный анализ методом конечных элементов. М.: ДМК Пресс, 2004. 432 с.
- [4] ГОСТ Р 52627-2006. Болты, винты и шпильки. Механические свойства и методы испытаний.


Подпись и дата	
№инв. №дубл.	
Взамен инв.	
Подпись и дата	
Инв.Nº подл.	

